\square

Question Paper Code : X 60501

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Fourth Semester
Electrical and Electronics Engineering
EE 2255/EE 46/080280029/10133 EE 406 A - DIGITAL LOGIC CIRCUITS (Regulations 2008/2010)
(Common to PTEE 2255 - Digital Logic Circuits for B.E. (Part-Time) Third Semester - EEE - Regulations 2009)

Time : Three Hours
Maximum : 100 Marks
Answer ALL questions
PART - A
(10×2=20 Marks)

1. Draw OR gate using NAND gates.
2. Give any two applications of decoders.
3. Draw the logic diagram of master slave D-Flip Flop using NAND gates.
4. Reduce the number of states in the following table and tabulate the reduced state table.

Present State	Next State		Output	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
a	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	c	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

5. What is state assignment problem ?
6. What are the benefits of state reduction?
7. What is Fan in and Fan out? Give Fan in, Fan out characteristics of CMOS.
8. What ROM size is needed to implement a binary multiplier that multiplies two 4-bit numbers?
9. What is the function of wait statement in VHDL package ?
10. Write the explanation of T'Base and T'Low predefined attributes.
PART - B
(5×16= 80 Marks)
11. a) i) Express the function $\mathrm{F}=\mathrm{A}+\overline{\mathrm{B}} \mathrm{C}$ in
1) Canonical SOP form and
2) Canonical POS form.
ii) Design BCD to Excess 3 code converter.
(OR)
b) i) Simplify using K-map

$$
\begin{equation*}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(7,8,9)+\mathrm{d}(10,11,12,13,14,15) \tag{8}
\end{equation*}
$$

ii) Design a full subtractor using half subtractors.
12. a) i) Design master-slave flipflop using RS flipflop.
ii) Draw the logic diagram of clocked D flipflop with AND and NOR gates.
(OR)
b) Obtain the state table and state diagram of the sequential circuit.

13. a) i) Construct two input TTL NAND gate with three states output and explain its operation. Also discuss its merits and demerits.
ii) Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the complement of the input number.
b) i) A combinational circuit is defined by the functions :
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(3,5,6,7)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,2,4,7)$
Implement the circuit with a PLA having three inputs, four product terms and two outputs.
ii) Derive the PLA programming table for the combinational circuit that squares a 3-bit number. Minimize the number of Product terms.
14. a) i) How is memory modelled in VHDL? Write a VHDL code that illustrates the read and write operations of memory.
ii) Design and implement a 4-bit binary to Gray code converter using a PLA.
(OR)
b) i) Compare the characteristics of TTL, ECL and CMOS logic families.
ii) Design an AND-OR-PLA that implements the functions
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,2,4,6)$
$\mathrm{g}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(1,3,5,7)$.
15. a) Write HDL for four bit binary counter with parallel load and explain. (OR)
b) i) Write HDL for two to one line multiplexer with data flow description and behavioural description.
ii) Write HDL for four bit adder.

